Chapter 1

How Much CO_{2} Can You Store iin a Tree?

Teacher Notes

Activity Description

Time Learning Outcomes

Student Organisation Materials Needed

The students find a tree within the school grounds to measure. The students measure the tree and record their results on scrap paper. Back in the classroom, they transfer these results onto the worksheet provided to help them make the calculations.
1 hour

- To understand that trees are a natural carbon sink
- To calculate the amount of carbon stored in a real tree
- To understand the implications of carbon sinks and sources Individual (calculation) and Groups (discussion)
How Much CO_{2} Can You Store in a Tree Student Worksheet, a tape measure or a metre stick and some string

Task

This task allows us to quantify the amount of carbon, and equivalent CO_{2} gas, stored in a tree.
-(1)) Talking Points
Trees are a natural carbon sink. Get the students to think about other CO_{2} sources and sinks.
Sources:
Fossil fuels, leaks, biological sources
Sinks:
Oceans, atmosphere, plants, land, precipitation of carbonate minerals in rocks

Outdoor Instructions

1. Get the students to work in pairs. One student measures from the ground 1.3 m (or chest height) up the trunk of the tree, the other marks their place. Then the second student measures the circumference of the tree at this height. The height ensures a fair representation of the tree circumference is recorded.
2. The students record each measurement, both times on scrap paper.
-(1)) Talking Points
Get the students to think about what might affect the amount of carbon stored; do older trees store more carbon; does the type of tree make a difference; does the environment that the tree is in contribute to amount of carbon stored?

Classroom Instructions

Get the students to follow the instructions on the handout to complete the worksheet - there is a worked example at the end of this pack to help.

Teacher Notes

How Much CO_{2} Can You Store in a Tree?

-(1)) Discussion

Talk to the students about the link between trees and carbon: that carbon is locked up within trees but when trees are burnt for firewood, that carbon is released. Furthermore if the tree is buried and subject to heat and pressure over millions of years, the tree will become coal. Coal is a fossil fuel and burning fossil fuels releases CO_{2} to the atmosphere. An increase in CO_{2} in the atmosphere will lead to global warming.

Summary

Ask the students to think about how effective planting trees is, as a means to reduce carbon concentrations in the atmosphere. Consider: the rate at which trees grow, their environmental surroundings, the amount of carbon taken in from tree to tree and the lifetime of a tree. We may need a more immediate solution..

Worked Example

tree circumference 1

tree circumference 2

A) Calculate the average of your two measured circumferences.

Why? This removes human bias from the measurements. Human bias is when the measurement is affected by the person who took it.
tree circumference 1
$132 \div 144 \div 5$
$=\square \mathrm{cm}$

How much CO_{2} can be stored in atree?

Teacher Notes

average tree circumference

estimated dry weight

The estimated dry weight of the tree is a) the closest value to the average tree circumferences in the references figures or b) read off the graph, whichever you prefer your students to do.
B) Calculate the weight of carbon stored in the tree.

How? Most living things are half carbon. Therefore we can estimate the carbon content by dividing the dry weight of the tree by 2 . See reference figures for dry weight estimates.
estimated dry weight
$1964 \div 2=4 \mathrm{~kg}$

weight of carbon in tree

 $\mathbf{k g}$

equivalent weight of CO_{2}

C) Calculate the equivalent weight of CO_{2} gas stored as carbon in the tree.

How? We can calculate the equivalent weight of CO_{2} stored as carbon in the tree
by multiplying the estimated weight by the constant 3.67 , as given by
www.forestsforthefuture.co.uk.
weight of carbon in tree
$982 \times 3.67=4 \mathrm{~kg}$

How much CO_{2} can be stored in a tree?

Teacher Notes

Reference Table: Dry Weight of a Tree

Circumference (cm)	Tree dry weight (kg)
$\mathbf{5 0}$	106
$\mathbf{1 0 0}$	668
$\mathbf{1 5 0}$	1964
$\mathbf{2 0 0}$	4221
$\mathbf{2 2 5}$	5771
$\mathbf{2 5 0}$	7641
$\mathbf{2 7 5}$	9842
$\mathbf{3 0 0}$	12410
$\mathbf{3 2 5}$	15350
$\mathbf{3 5 0}$	18700
$\mathbf{4 0 0}$	26674

These values, provided by Forest Research, are for an individual hardwood tree in Westonbirt Arboretum. They should be used as an example.

Trees®will grow at different rates across the UK depending on, for example, the species, soil, drainage, slope aspect and climate conditions.

Reference Graph: Dry Weight of a Tree

How Much CO_{2} Can Be Stored in a Tree? Student Worksheet

Plants, flowers and trees absorb CO_{2} from the atmosphere. They use this CO_{2} gas during photosynthesis to create carbohydrates, which help them grow. This process locks away CO_{2} in the plant structure and helps regulate the levels of CO_{2} in our atmosphere. The size of the tree directly relates to the amount of CO_{2} locked inside. Older trees store more CO_{2}.

This activity consists of a field experiment. You and a partner measure a nearby tree before using some simple calculations to estimate the amount of CO_{2} gas secured by the tree.

How Much CO_{2} Can Be Stored in a Tree Experiment You will need:

- A soft tape measure or/ string and a metre rule
- This worksheet
- A research partner
- A nearby tree

Field Instructions:

1. Take turns in pairs.
2. Measure 1.3 m from the ground up the trunk of the tree and hold your finger on that point.
3. Ask your partner to measure around the trunk of the tree at the height you are holding your finger. Record your results on scrap paper and transfer these into your worksheet in class. (You should have two measurements, yours and your partner's).

Classroom Instructions:

1. Copy your tree measurements over from your scrap paper to the worksheet.
2. Calculate the average tree circumference.
3. Use this to estimate and record the dry weight of the tree using the table or the graph provided.
4. Calculate and record the weight of carbon stored by the tree.
5. Calculate the equivalent weight of CO_{2} stored in the tree as carbon, over the tree's lifetime of growth.

How Much CO_{2} Can Be Stored in a Tree?

Student Worksheet

tree circumference 1

tree circumference 2

A) Calculate the average of your two measured circumferences.

Why? This removes human bias from the measurements. Human bias is when the measurement is affected by the person who took it.
tree circumference 1

\square
average tree circumference

B) Calculate the weight of carbon stored in the tree.

> How? Most living things are half carbon, therefore we can estimate the carbon content by dividing the dry weight of the tree by 2 . See reference figures for dry weight estimates.
estimated dry weight
\square

$$
\div 2
$$

$\square$$\mathbf{k g}$

How much CO_{2} can be stored in a trees

Student Worksheet

weight of carbon in tree
C) Calculate the equivalent weight of carbon dioxide gas stored as carbon in the tree.
How? We can calculate the equivalent weight of CO_{2} stored as carbon in the tree
by multiplying the estimated weight by the constant 3.67, as given by
www.forestsforthefuture.co.uk.
weight of carbon in tree
equivalent weight of CO_{2}

equivalent weight of CO_{2}

Reference Table: Dry Weight of a Tree

Circumference (cm)	Tree dry weight (kg)
$\mathbf{5 0}$	106
$\mathbf{1 0 0}$	668
$\mathbf{1 5 0}$	1964
$\mathbf{2 0 0}$	4221
$\mathbf{2 2 5}$	5771
$\mathbf{2 5 0}$	7641
$\mathbf{2 7 5}$	9842
$\mathbf{3 0 0}$	12410
$\mathbf{3 2 5}$	15350
$\mathbf{3 5 0}$	18700
$\mathbf{4 0 0}$	26674

These values, provided by Forest Research, are for an individual hardwood tree in Westonbirt Arboretum. They should be used as an example.

Trees®will grow at different rates across the UK depending on, for example, the species, soil, drainage, slope aspect and climate conditions.

How much CO_{2} can be stored in a tree?

Student Worksheet

Reference Graph: Dry Weight of a Tree

So, you have just calculated that the tree you measured contains \square carbon, and \square kg equivalent weight of CO_{2} gas.

For scale
The average UK coal-fired power station emits 1 kg of CO_{2} per kWh generated.
1 kWh of electricity will power:

ONE dishwasher for 1 hour
ONE TV for 3 hours
ONE games console for 5 hours
ONE laptop for 22 hours

ONE hoover for 2 hours
ONE freezer for 4 hours
ONE pair of straighteners for 11 hours
ONE aquarium for 33 hours

Note
A molecule of CO_{2} gas contains two (relatively heavy) oxygen atoms for every single carbon atom, so a single CO_{2} molecule weighs more than a single carbon atom.

